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Contextuality is an indicator of nonclassicality, and a resource for various quantum procedures. In this
Letter, we use contextuality to evaluate the variational quantum eigensolver (VQE), one of the most
promising tools for near-term quantum simulation. We present an efficiently computable test to determine
whether or not the objective function for a VQE procedure is contextual. We apply this test to evaluate the
contextuality of experimental implementations of VQE, and determine that several, but not all, fail this test
of quantumness.
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Introduction.—Quantum computing hardware is enter-
ing the era of noisy intermediate scale quantum (NISQ)
computers [1]. These are machines that are too large to
simulate with classical computers, but too small to allow
fault tolerant quantum computation. A crucial question is
whether NISQ machines can perform useful tasks beyond
the capabilities of classical computers [2].
In the last decade much attention has been focused on

algorithms for quantum simulation of chemical systems
[3–21]. One such algorithm, the variational quantum
eigensolver (VQE, first proposed in [11]), has emerged
as an important potential application of NISQ computers.
Experimental realizations of VQE have been performed on
a number of platforms [9–23].
VQE is based on mapping a Hamiltonian H to a

weighted sum
P

i hiPi, where the terms S ≡ fPig are
Pauli operators and the hi are (real) coefficients. A short
quantum circuit prepares an ansatz state, and the expect-
ation value of each Hamiltonian term is estimated by
repeated prepare-and-measure experiments. The ansatz
parameters are optimized classically, producing a varia-
tional upper bound to the ground state energy.
VQE is advantageous for NISQ computers because of

the short coherence times required compared to phase
estimation [13]. Theoretical improvements of VQE to date
have proposed methods to reduce the number of qubits
and measurements required [24–36], and to improve the
ansatz states [31,37,38], computation of gradients [39–41],
and classical optimization techniques [42]. In the present
Letter we consider a separate issue: how quantum mechani-
cal is this hybrid quantum-classical algorithm, for a given
Hamiltonian? We use contextuality as our measure of
quantumness.
The study of contextuality began with the Bell-Kochen-

Specker theorem [43–45]. Contextuality of preparation,
transformation and measurement were defined in 2008,
and the relationship of contextuality to negativity of
quasiprobability representations was established [46–50].

Contextuality has been extensively studied in the last
decade [51–75].
The Bell-Kochen-Specker theorem states that there exist

quantum systems for which it is impossible to reproduce
the outcome probabilities of every possible measurement as
marginals of single joint probability distribution [43–45].
However, if we restrict to some smaller set of measure-
ments corresponding to a set of observables S, properties of
the set determine whether a joint distribution may exist for
only those measurements. Measurement contextuality
refers to various types of contradictions that can appear
in attempts to describe sets of measurements by joint
probability distributions. We examine “strong contextual-
ity” [76], which is contextuality in the same vein as the
Peres-Mermin square [77–79] (see Mermin’s outline
of a “plausible” hidden-variable theory in [[79], § II].)
Colloquially, a set of measurements is strongly contextual
if it is impossible to consistently assign outcomes to every
measurement in the set. In “weak” versions of contex-
tuality such as Bell inequality violations, joint outcomes
may be consistently assignable, but statistical predictions
based on the existence of joint probability distributions
are violated.
Since VQE is an important near-term application of

NISQ machines, it is natural to consider how the con-
textuality of VQE procedures is related to any quantum
advantage that they may obtain. In this Letter, we present
a method to analyze the contextuality of VQE procedures.
As applied to VQE, strong contextuality is a property of
the target Hamiltonian. It is independent of the ansatz
states, and provides a stringent test of the quantumness of
the problem being addressed. The set of Hamiltonians that
are noncontextual by our definition includes diagonal
Hamiltonians that encode a classical objective function.
Such problems are addressed by the quantum approximate
optimization algorithm (QAOA), which is closely related
to VQE [80]. As we shall see, the set of noncontextual
Hamiltonians contains the set of commuting Pauli
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Hamiltonians, and therefore represents a broader definition
of classicality.
One concept upon which we rely is the closed subtheory:

a set of measurements in which all measurements whose
outcomes are determined with certainty by the outcomes of
others in the set are themselves members of the set. We
introduce this concept here because it provides a distinction
between this work and the criteria for strong contextuality
studied in [52], which are based on sets of observables that
are not necessarily closed subtheories. In [64] it is shown
that the efficiency of classical simulation is limited by
contextuality for sets of measurements that are closed
subtheories. We impose the requirement that sets of
operators form closed subtheories, so that the results of
[64] apply to our setting.
In [55] the authors obtain criteria for contextuality based

on compatibility graphs, as do we. However, [55] focuses
on weak contextuality, that is, violation of noncontextual
inequalities, whereas our interest is in strong contextuality.
We further discuss the distinction between our condition
for contextuality and previously studied criteria in the
discussion section and in [81].
A natural next step is to develop measures that quantify

contextuality based on our criterion. We suggest two simple
measures at the end of the next section, and discuss more
general measures in [81], as well as their relations with
prior measures, which include the contextual fraction
[51,60,68,69], relative entropy of contextuality, mutual
information of contextuality, contextual cost (all in [58]),
and rank of contextuality [63].
In the next section, we develop the notion of contextuality

we will study and give our main results. In the following
section, we evaluate the contextuality of several VQE
experiments. We conclude with a discussion of our results
and directions for future work.
Strong contextuality.—We focus on the analysis of

strong contextuality for sets of Pauli operators. We use
the following notation: X ≡ σx, Y ≡ σy, Z≡ σz, and
I ≡ 2 × 2 identity (1 will denote a generic identity matrix).
We omit the tensor product symbol: IX denotes I ⊗ σx.
Let S be the set of measurements that are performed
in a VQE procedure: in our case these will be
Pauli measurements. As we will discuss below, the (non)
contextuality of a VQE procedure is determined by proper-
ties of S.
A joint outcome assignment is an assignment of one

outcome (�1) to each measurement in S. In an ontological
hidden-variable theory, joint outcome assignments corre-
spond to ontic states (“real states”) of a system, since they
may be interpreted as definite ontological values for the
observables S. A measurement is then seen as revealing
information about the ontic state, which exists independ-
ently whether it is measured or not.
A context on a finite dimensional Hilbert space is a set

of pairwise-commuting observables whose eigenvalues

uniquely specify the (shared) basis states. If S is a context,
we will see that it is always possible to consistently assign
outcomes to the measurements in S. However, if S is not a
context and has nonempty intersection with multiple
incompatible contexts (context compatibility is defined
in [81]), it may be impossible to consistently assign joint
outcomes. In this case the outcomes thus assigned to any
individual measurement are context-dependent: hence the
term “contextual”.
Given any set of measurements S, let S be the set of

measurements whose outcomes are predicted with certainty
given an assignment of outcomes to S. In the language
of [64], S corresponds to the smallest closed subtheory
containing S. The outcomes for S induced by an assign-
ment of outcomes to S may contain contradictions even if
the outcomes for S alone do not.
A prediction with certainty occurs when for some

observable A0 there exists a commuting subset S0 ⊆ S such
that A0 is equal to the product of the operators S0. Then
since the operators S0 may all be measured simultaneously,
in any joint outcome assignment to S ∪ fA0g the outcome
assigned to A0 must be the product of the outcomes
assigned to S0; we therefore say that A0 is directly
determined by S [77]. A0 may now contribute to determin-
ing some other operators that are not directly determined by
S. Thus in general a measurement A is determined by S if
there is a “determining tree” that leads from S to A:
Definition 1. A determining tree for a Pauli measure-

ment A over a set of Pauli measurements S is a tree whose
nodes are Pauli operators and whose leaves are operators
in S, such that (1) the root is A, (2) all children of any
particular parent pairwise commute (as operators), and
(3) every parent node is the operator product of its children
(and thus commutes with them).
Figure 1 shows determining trees for the measurements

�YY over S ¼ fXI; IX; ZI; IZg. It is easy to check
that these trees satisfy the properties of Definition 1.
This example is a recasting of the classic Peres-Mermin
square [77–79].
Given Definition 1, we say that A is determined by S

if and only if there exists a determining tree for A over S.
This also provides a formal definition for S: it is the set of
Pauli measurements for which there exist determining trees
over S.
Given a determining tree τ for a Pauli A over a set of

Pauli operators S, and a joint outcome assignment to S, we
may now find the determined outcome for A. Let L be the

YY –YY

XZ ZX

XI IZ ZI IX

XX ZZ

XI IX ZI IZ

FIG. 1. Determining trees for �YY over fXI; IX; ZI; IZg.
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leaves of τ; L may contain multiple copies of the same
operator. By induction on property 3 of a determining tree
(see Definition 1), A is the operator product of the elements
of L. Therefore, given an assignment of values ρL ¼ �1 to
each L ∈ L, the value assigned to A must be

ρA ¼
Y

L∈L
ðρLÞmL ¼

Y

L∈D
ρL; ð1Þ

where the exponent mL is the multiplicity of the operator L
in L.D is a subset of the leaves that we call the determining
set of τ, defined as follows:
Definition 2. For a determining tree τ, the determining

set is defined to be the set containing one copy of each
operator with odd multiplicity as a leaf in τ. If for some
determining tree with root A, the determining set is empty,
then everymL in the first product in (1) must be even, so the
outcome assigned to A is 1.
We may now state our condition for contextuality:
Definition 3. A set S of Pauli operators is contextual if

for some Pauli A there exists a determining tree τ for A over
S and a determining tree τ0 for −A over S such that the
determining sets for τ and τ0 are identical.
By (1), the existence of such trees implies that for any

joint outcome assignment, the outcome for A is both þ1
and −1, which is a contradiction.
How does this apply to the Peres-Mermin square?

Figure 1 gives determining trees for �YY over S ¼ fXI;
IX; ZI; IZg. In each tree, the set of leaves is S and each leaf
has multiplicity 1, so the determining set for each tree is S.
Thus S satisfies the criteria in Definition 3, and is
contextual.
The criterion for strong contextuality in Definition 3

depends on a measurement operator (A ∈ S) that may or
may not be an element of S. However, for any S that is
contextual according to Definition 3, we may obtain a
contradiction in the assignment(s) to an operator contained
in S. This is demonstrated by the following corollary:
Corollary 3.1. A set S of Pauli operators is contextual if

and only if for some B ∈ S there exists a determining tree
for −B over S, whose determining set is fBg.
The plain language statement of the contradiction in this

case is: “the outcome (�1) assigned to −B must be the
outcome assigned to B.” A third equivalent definition is
also useful:
Corollary 3.2. A set S of Pauli operators is contextual if

and only if there exists a determining tree for −1 over S,
whose determining set is empty.
The proofs may be found in [81]. The plain language

statement of the contradiction in this case is this: “the
outcome assigned to −1 (whose eigenvalues are all −1)
must beþ1.” Definition 3, Corollary 3.1, and Corollary 3.2
formalize the notion of contradiction in induced joint
outcomes for S. Since S is the smallest closed subtheory

containing S, such a contradiction constitutes strong
contextuality of S.
We now present three theorems that give necessary and

sufficient conditions for measurement contextuality in the
sense of Definition 3. We will make use of the following
concept:
Definition 4. For a set S of Pauli operators, the

compatibility graph of S is an undirected graph whose
nodes are the operators in S, and in which a pair of
operators is adjacent if and only if they commute.
Theorem 1. A set of four Pauli operators fA;B;C;Dg

is contextual if and only if its compatibility graph has one
of the forms given in Fig. 2 (up to permutations of the
operators).
Theorem 2. A set of n Pauli operators is contextual if

and only if it contains a subset consisting of four operators
whose compatibility graph has one of the forms given in
Fig. 2 (up to permutations of the operators).
The proofs of Theorems 1 and 2 are given in [81].

Theorem 2 provides an efficient algorithm for determining
whether an arbitrary set S of Pauli measurements is
contextual. First remove any operators from S that com-
mute with all others (searching for these takes OðjSj2Þ
steps): let T be the remaining set. Then, search in T for a
set of three operators A, B, C such that A commutes with B
and C, but B and C anticommute. If such a set exists, then
since there is some D ∈ T that anticommutes with A, the
compatibility graph of A, B, C, D has one of the forms in
Fig. 2 (up to exchange of B and C); thus S is contextual.
If no such set exists, then S is noncontextual. There are
OðjSj3Þ subsets of size three in S, so this is the runtime for
the search. In many VQE procedures some structure on the
set S is known, which may improve the efficiency of
determining whether it is contextual.
Although we ultimately only need to search for triples of

operators in the algorithm, the contextual compatibility
graphs in Fig. 2 have four nodes instead of three because we
must first remove universally commuting operators. Note
that after this is done (to obtain T ), we search for a subset
fA; B;Cg in which commutation is not transitive. Each
such subset represents an obstacle to commutation being an
equivalence relation on T . This is formalized in the
following theorem:
Theorem 3. For a set S of Pauli operators, let T ⊆ S be

the set obtained by removing any operator that commutes
with all others in S. Then S is noncontextual if and only if
commutation is an equivalence relation on T .

A B

C D

A B

C D

A B

C D

FIG. 2. Compatibility graphs for contextual sets of four Pauli
operators.
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The proof of Theorem 3 is given in [81]. That commu-
tation is not transitive in general is a nonclassical property.
Operators that commute with all others in the set cannot
contribute to contextuality (see Lemma 2.1, in [81]), so it is
satisfying that, after removing these, nontransitivity of
commutation is equivalent to contextuality.
Can we extend our evaluation procedure to a measure of

the amount of contextuality present in a contextual set S?
One natural measure of the contextuality of H is obtained
by evaluating the distance from H to any noncontextual
Hermitian operator, as suggested in [68]. Any choice of
metric on observables will induce such a measure. Let a
decontextualizing set S0 be any subset of S such that SnS0
is noncontextual. Then we may define another measure of
contextuality as the minimum of

P
j jh0jj over all subsets

fh0jg of the coefficients that are associated to decontextu-
alizing sets. This measure provides an upper bound on the
error in the energy estimate induced by “decontextualizing”
the Hamiltonian. We discuss generalizations of these
measures, and their relations with previously studied
measures in [81].
Evaluation of contextuality in VQE experiments to

date.—We now use the methods of the previous section
to assess contextuality in VQE experiments performed to
date. The results are summarized in Table I, in which we
also give CD0, a measure of contextuality given by the
minimum size of any decontextualizing set as a fraction of
the total number of terms. For the larger Hamiltonians, we
use a heuristic approximation for CD0: see [81] for details
about this method and about the experiments. Note that
each simulation of H2 in the STO-3G minimal basis is
noncontextual. This is not surprising if one considers
these simulations as encoding a two-dimensional Hilbert
space spanned by a bonding and antibonding state, i.e., a

single qubit, for which Bell gave a noncontextual hidden-
variable theory [44].
Discussion.—All VQE procedures that have been imple-

mented to date, whether noncontextual or contextual, have
been small enough to simulate classically. The purpose of
such experiments is not to demonstrate quantum advantage,
but to apply current hardware to small examples of real-
world applications. Such efforts have been instrumental in
developing both experimental and theoretical capabilities;
indeed, VQE itself was developed in this context [11].
For these reasons, we should be clear that our classi-

fication of these experiments as contextual or noncontex-
tual is not a judgement of the value of the experiments,
but rather a constructive categorization whose purpose
is to inform future experiments and theoretical work.
Contextuality of a Hamiltonian according to our definition
is connected to inefficiency of classical simulation [64].
Furthermore, as noted above, we may regard a noncontex-
tual Hamiltonian as an instance of an essentially classical
problem, akin to quantum algorithms for explicitly classical
problems as in QAOA [80] (note that QAOA’s diagonal
Hamiltonians are always noncontextual).
In spite of this last point, however, a noncontextual VQE

procedure may still be hard to simulate classically, since
classical problems can be classically hard. However,
contextuality in a VQE procedure provides a strict sepa-
ration between it and any classical algorithm by ruling out
the existence of a description of the problem in terms of
joint probability distributions over a classical phase space,
and thus precluding any classical approach either explicitly
or implicitly based on such distributions. We suggest
therefore that future VQE implementations, even at small
scales, should focus on contextual Hamiltonians, according
to the criteria we have developed.
Our criterion for contextuality of a set of Pauli operators

S is that joint outcome assignments to S are necessarily
self-contradictory. In other words, we analyze contextuality
for the minimal closed subtheory containing S; this allows
us to invoke the results of [64], which show that efficient
simulation by sampling from the discrete Wigner function
is only possible in the absence of contextuality. This is not
the only choice: for example, [51,52,65] do not require the
measurements to form a closed subtheory. The relationship
of our criterion to that of [51,52,65] is discussed further
in [81].
The set of noncontextual Hamiltonians contains the set

of commuting Pauli Hamiltonians, but is distinct from the
set of frustration-free Hamiltonians, as may be seen by
taking A, B, C, and D in Fig. 2 to be four consecutive
projectors in the AKLT model (e.g., [87]). We leave further
consideration of the set of noncontextual Hamiltonians to
future work.
Subsequent to the appearance of our work, the result

given in our Theorem 2 was independently discovered in
[[75], § IV], which presents a Wigner function treatment of

TABLE I. Evaluation of contextuality in VQE experiments.
CD0 is the minimum number of terms we must remove from the
Hamiltonian to reach a noncontextual set, as a fraction of the total
number of terms (jSj). In [22], jSj varies.

Citation: System: Contextual? CD0 jSj
Dumitrescu et al. [22] Deuteron No 0 � � �
Kandala et al. [17] H2 No 0 4
O’Malley et al. [13] H2 No 0 5
Hempel et al. [18] H2 (BK) No 0 5
Hempel et al. [18] H2 (JW) No 0 14
Colless et al. [19] H2 No 0 5
Kokail et al. [23] Schwinger

Model
Yes ∼0.16 231

Nam et al. [20] H2O Yes 0.27 22
Hempel et al. [18] LiH Yes 0.33 12
Peruzzo et al. [11] HeHþ Yes 0.38 8
Kandala et al. [17] BeH Yes ∼0.74 164
Kandala et al. [17,21] LiH Yes ∼0.77 99
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qubit systems using a phase space constructed from non-
contextual closed subtheories.
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